Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.29.23300544

ABSTRACT

The SARS-CoV-2 virus activates maternal and placental immune responses, which in the setting of other infections occurring during pregnancy are known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. Here, we assessed the impact of maternal SARS-CoV-2 on HBCs isolated from term placentas using single-cell RNA-sequencing. We demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells, with altered morphology and impaired synaptic pruning behavior compared to HBC models from negative controls. These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.17.22275154

ABSTRACT

BACKGROUND: While emerging data during the SARS-CoV-2 pandemic have demonstrated robust mRNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of mRNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVE: We sought to profile the humoral immune response to a COVID-19 mRNA booster dose in a cohort of pregnant, lactating, and age-matched nonpregnant women. STUDY DESIGN: We characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating and 20 nonpregnant age-matched controls who received a BNT162b2 or mRNA-1273 booster dose after primary COVID-19 vaccination. We also examined the vaccine-induced antibody profiles of 15 maternal:cord dyads at delivery. RESULTS: Receipt of a booster dose during pregnancy resulted in increased IgG1 against Omicron Spike (post-primary vaccination vs post-booster, p = 0.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total IgG1, IgM and IgA levels and neutralizing titers against Omicron compared to nonpregnant women. Subtle differences in Fc-receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant compared to nonpregnant individuals. Analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific IgG1 in maternal and cord blood, yet higher Spike-specific Fc-gamma-R3a-binding antibodies in the cord relative to maternal blood (p = 0.002), consistent with preferential transfer of highly functional IgG. Spike-specific IgG1 levels in the cord were positively correlated with time elapsed since receipt of the booster dose (Spearman R 0.574, p = 0.035). CONCLUSIONS: These data suggest that receipt of a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester, higher Spike-specific cord IgG1 levels are achieved with greater time elapsed between receipt of the booster and delivery. Receipt of a booster dose has the potential to augment maternal and neonatal immunity.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.29.437516

ABSTRACT

There is a persistent male bias in the prevalence and severity of COVID-19 disease. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of disease in adults, and play a key role in the placental anti-viral response. Moreover, the interferon response has been shown to alter Fc-receptor expression, and therefore may impact placental antibody transfer. Here we examined the intersection of viral-induced placental interferon responses, maternal-fetal antibody transfer, and fetal sex. Placental interferon stimulated genes (ISGs), Fc-receptor expression, and SARS-CoV-2 antibody transfer were interrogated in 68 pregnancies. Sexually dimorphic placental expression of ISGs, interleukin-10, and Fc receptors was observed following maternal SARS-CoV-2 infection, with upregulation in males. Reduced maternal SARS-CoV-2-specific antibody titers and impaired placental antibody transfer were noted in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.07.21253094

ABSTRACT

BackgroundPregnant and lactating women were excluded from initial COVID-19 vaccine trials; thus, data to guide vaccine decision-making are lacking. We sought to evaluate the immunogenicity and reactogenicity of COVID-19 mRNA vaccination in pregnant and lactating women. Methods131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 non-pregnant) were enrolled in a prospective cohort study at two academic medical centers. Titers of SARS-CoV-2 Spike and RBD IgG, IgA and IgM were quantified in participant sera (N=131), umbilical cord sera (N=10), and breastmilk (N=31) at baseline, 2nd vaccine dose, 2-6 weeks post 2nd vaccine, and delivery by Luminex, and confirmed by ELISA. Titers were compared to pregnant women 4-12 weeks from native infection (N=37). Post-vaccination symptoms were assessed. Kruskal-Wallis tests and a mixed effects model, with correction for multiple comparisons, were used to assess differences between groups. ResultsVaccine-induced immune responses were equivalent in pregnant and lactating vs non-pregnant women. All titers were higher than those induced by SARS-CoV-2 infection during pregnancy. Vaccine-generated antibodies were present in all umbilical cord blood and breastmilk samples. SARS-CoV-2 specific IgG, but not IgA, increased in maternal blood and breastmilk with vaccine boost. No differences were noted in reactogenicity across the groups. ConclusionsCOVID-19 mRNA vaccines generated robust humoral immunity in pregnant and lactating women, with immunogenicity and reactogenicity similar to that observed in non-pregnant women. Vaccine-induced immune responses were significantly greater than the response to natural infection. Immune transfer to neonates occurred via placental and breastmilk.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL